Gregory Khrapumovich, Marina Estrovich

Chemical Plant Control System

November 1997

Introduction

This project is a simplified version of a distributed control system for a batch chemical process. Gregory has implemented similar system several years ago at Sandoz Ringaskiddy pharmaceutical plant. At this time he used the Elsag Bailey proprietary computer language Batch-90 which is substantially different from C++.

The goal of this project is to develop communication and synchronization software for typical batch control system using more traditional means of interprocess communications. Specifically, we have selected threads exchanging messages.

Note. We have selected this way of interprocess communications because it is closed to a real distributed control system. In the real life different equipment units would be controlled by independent processes located in different CPUs. We have chosen threads because communication between independent processes would be difficult to implement in the lab environment and debugging of inter-thread communications and synchronization was difficult enough.

Project goal

The project should simulate a plant control system. Chemical plant consists of 5 reactors, each running a batch process. A reactor can perform following operations:

· Idle - wait for specified time,

· Cooking - for the purpose of this simulation, same as Idle,

· Transfer In - communicate with another reactor and transfer the specified amount of material

· Transfer Out - complimentary to Transfer In.
Each reactor is controlled by a recipe. The recipe includes up to 5 phases, each phase can perform any of the above operations. Control system should verify that the recipes for different reactors match. For example, if Reactor 1 is trying to transfer in from Reactor 2, then reactor 2 must be running in the phase that defines Transfer Out to Reactor 1 operation.

User should be able to edit recipes, start and stop the batch and monitor the progress and current state of each reactor.

Program organization

Program is written in Visual C++ 5.0 environment under Windows NT 4.0 operating system (it can also run under Windows 95). The program includes 6 threads: one user interface thread and 5 reactor threads. Threads are exchanging messages. The only global data is a list of thread addresses (handles) that is used to direct messages. The shared data is used only for reading, therefore no data protection is necessary.

User interface thread supports a fairly advanced GUI. It has following features:

· Allows the user to edit the recipe (only when all reactors are stopped)

· Stores the recipe to file and reads it back

· Displays current phase, reactor state and amount of material in each reactor

· Changes operation parameters depending on the operation and displays help tips explaining each parameter

· Allows the user to start or stop each reactor

· Changes reactor shape depending on the operation

· Displays progress bar for each operation (progress is reported by the reactor thread to the user interface thread)

· for Cooking and Idle progress is measured by the elapsed time

· for Transfer In operation the progress is measured by the amount transferred

· Transfer Out does not display the progress bar because this operation does not know when transfer is supposed to be complete. The decision is made by the corresponding Transfer In operation. Only Transfer In recipe specifies the amount to be transferred in order to avoid conflicts.

In addition to supporting GUI, the user interface thread provides the batch management functionality. When user starts a reactor, the program reads the current phase number, then reads the operation specified in the reactor recipe for this phase and sends a message to the reactor. Message contains the operation parameters, for example, a message "start transfer in" includes the ID of the reactor to transfer from and target amount. When the reactor reports that the operation is complete, user interface thread proceeds to the next phase.

Each operation is executed by the appropriate reactor thread. All reactor threads execute the same function. Reactor's behavior can be best modeled by a finite state machine. We have implemented this behavior using an endless cycle. In the beginning of the cycle reactor extracts a message from the queue and processes it. Reaction to each message depends on the current state. After message processing, reactor performs state-related functions. For example, if current state is "transfer in", reactor is continuously sending messages to the other reactor allowing corresponding Transfer Out operation to keep track of the amount.

Before any reactor can start a transfer operation, it negotiates with the other reactor (specified in the recipe) and makes sure that the other reactor executes the complimentary transfer and reactor IDs match.

For more details please refer to the listings. The following files are the most important:

· ChemicalPlantView.cpp - user interface thread

· ReactorThread.cpp - reactor threads

· ReactorThread.h - global data

· ChemicalPlant.h - definition of messages

Description of the worker threads

Reactor thread simulates the control program for a chemical reactor. It should support the following operations of the reactor:

· Idle (wait for specified time in seconds)

· Cooking (same as Idle)

· Transfer In (transfer specified amount from specified reactor, the other reactor must be executing Transfer Out)

· Transfer Out (transfer to a specified reactor, the other reactor must be executing Transfer In).

Each Reactor thread must maintain the following private data:

- reactor ID,

- amount of material in the reactor,

- reactor state

Reactor state can take the following values (defined in ReactorThread.h)

// Reactor states

const int COOKING

= 0;

const int IDLE

= 1;

const int TRANSFER_IN

= 2;

const int TRANSFER_OUT

= 3;

const int STOPPED

= 4;

const int TRYING_TO_START_XFER_IN
= 5;

const int TRYING_TO_START_XFER_OUT
= 6;

const int COMPLETE

= 7;

Threads are exchanging the following messages (defined in ChemicalPlant.h)

/////////// User defined messages //////////////////////////

// From User Interface (Recipe) to worker treads (Reactors)

// These messages command worker thread to change state

#define WM_USER_INITIALIZE

(WM_USER + 1)

#define WM_USER_TERMINATE

(WM_USER + 2)

#define WM_USER_STOP

(WM_USER + 3)

#define WM_USER_START_XFER_IN

(WM_USER + 4)

#define WM_USER_START_XFER_OUT
(WM_USER + 5)

#define WM_USER_START_IDLE

(WM_USER + 6)

#define WM_USER_START_COOKING

(WM_USER + 7)

// From worker threads back to user interface

#define WM_USER_REPORT_STATE

(WM_USER + 8)

#define WM_USER_REPORT_AMOUNT

(WM_USER + 9)

#define WM_USER_REPORT_TIME

(WM_USER + 10)

// Between worker threads (to synchronize Transfer operation)

#define WM_USER_REQUEST_XFER_OUT
(WM_USER + 11)

#define WM_USER_XFER_ACTIVE

(WM_USER + 12)

#define WM_USER_XFER_DONE

(WM_USER + 13)

The complete reactor algorithm is shown on the drawing. The most difficult part of the algorithm is synchronization of Transfer In and Transfer Out operations. The synchronization protocol is explained in the table below.

	Transfer In
	Transfer Out

	Receive a command START_TRANSFER_IN from user interface thread.

Extract target reactor ID and amount setpoint from the message

Change state to TRYING_TO_START_TRANSFER_IN
	Receive a command START_TRANSFER_OUT from user interface thread.

Extract target reactor ID

Change state to TRYING_TO_START_TRANSFER_OUT

	Wait for the other reactor to request transfer
	Send a REQUEST_TRANSFER_OUT message to the specified reactor (repeat until confirmed)

	Verify that the reactor requesting transfer has the right ID.

Change state to TRANFER_IN
	

	Repeat until the amount setpoint is reached:

· Increase the reactor amount by one unit

· Report new amount to the User Interface thread

· Send TRANSFER_ACTIVE message to the reactor transferring out
	Upon receiving the first TRANSFER_ACTIVE message, change state to TRANSFER_OUT

	
	Upon receiving each TRANSFER_ACTIVE message

· Decrease the reactor amount by one unit

· Report new amount to the User Interface thread

	When target amount is reached:

· Change state to COMPLETE

· Send TRANSFER_DONE message to the reactor transferring out
	Upon receiving TRANSFER_DONE message, change state to COMPLETE

There are two additional features of the protocol not shown in the above table for clarity reason:

· When any reactor performing a transfer is commanded to stop by the user interface thread, it sends a STOP message to the other reactor

· Any state change is reported to the user interface thread.

Note that the protocol is asymmetric. TRANSFER_IN operation behaves as a master. It keeps transfer going by continuously sending TRANSFER_ACTIVE messages and it decides when transfer is done and sends TRANSFER_DONE message.

Refer to the synchronization algorithm for details.

Recommended test procedure

1. Copy the executable file and the sample recipe from the website.

2. Run ChemicalPlant.exe in Windows NT environment (you may have to wait for several seconds)

3. Edit the recipe. For example, for Reactor 1 define the first phase as Transfer In, first parameter = 30 (amount to transfer) and second parameter = 2 (from Reactor 2). Then enter the recipe for Reactor 2: first phase Cooking with parameter=15 (duration in seconds) and second phase Transfer Out with parameter = 1 (to Reactor 1).

4. Start Reactor 1 and Reactor 2

5. Reactor 1 should be in the state "Trying to start transfer in". It means that it has requested Reactor 2 to start transfer and now is waiting for confirmation. Reactor 2 should go to "Cooking" state and complete it in 15 seconds. Then reactor 2 goes to phase 2. It displays a message "Trying to start transfer out" for a short time, then changes its state to "Transfer Out". At the same time, Reactor 1 receives confirmation from Reactor 2 and changes its state to "Transfer In" and the transfer starts.

6. You can interrupt the transfer by stopping any reactor. The other reactor should also stop. When you restart both reactors, transfer continues (manual restart of both reactors is required for safety reasons).

7. Now you can try the demo recipe. Go to File menu and open the file demo.rcp. Then start all 5 reactors.

Conclusion

We are very pleased with the results. All main goals were reached. Communication algorithm appears to be stable and the user interface has exceeded our initial expectations.

We have never worked with threads before and the learning curve was steep. Fortunately Visual C++ package contains a number of samples including a sample multi-threaded program which we used as a reference. Microsoft recommends events and shared memory as a preferred way of thread synchronization. We felt, on the contrary, that messages better represent communications in a real distributed system, therefore we had to invent our own ways. Visual C++ worked well for most of the time but gave us hard time on some unexpected issues. For example, we spent a lot of time trying to make all windows start maximized. Eventually we succeeded with the main window, but still could not do it with the child window. On-line help has some specific instructions on the subject, but they don't work.

We have not implemented pump simulation as initially planned (it was envisioned that the transfer operation would turn on the corresponding pump and should the pump fail, transfer would stop). This portion was found to be redundant with already implemented feature: if user stops one reactor during transfer, the other reactor would also stop.

If we do it again we might consider implementing independent user interfaces for each reactor. In the current implementation, the user has to stop all reactors in order to edit the recipe for one of them. That can only be fixed if each reactor has its own user interface window.

1
5

